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Chapter 1

Introduction

Let [ be a positive integer, let p be a prime number, and let F' = GF(p') be the
finite field of p' elements. By F* we denote the multiplicative group of F. It
has p! — 1 elements.

By the discrete logarithm problem in F* we mean the following: Given a,y €
F such that « is an element of the cyclic group () generated by v. Find z € N
such that a = y*. We call z a discrete logarithm of a to base 7. Frequently,
the smallest non-negative discrete logarithm is called the discrete logarithm of
a to base v. We will use this terminology if we talk about the size of a discrete
logarithm and we will denote that number by log, a.

In our formulation of the discrete logarithm problem, we assume that a
discrete logarithm of a to base 7 exists, that is, @ € (y). Given any two
elements a and v in F*, this is not necessarily true. In fact, a more general
version of the discrete logarithm problem in F* is the following. Given two
elements «,y € F*. Decide, whether a € (v) If the answer is “yes’, find a
discrete logarithm of a to base . However, in cryptographic applications, it
is almost always clear that a € (7). The cryptanalytic challenge is to find a
discrete logarithm of a to base 7.

There are two types of discrete logarithm problems in the multiplicative
group F™*.

1. Full DLP The problem of computing discrete logarithms in the full group
F™, that is, the base element has very high order.

2. Subgroup DLP The problem of computing discrete logarithms in a sub-
group of F*, that is, the order of the base element is a divisor of p' — 1
which si considerably smaller than p' — 1.

In this document we report about the state of the art of solving the full
DLP and the subgroup DLP. This report is organized as follows. In Chapter



2 we review generic algorithms which are used to attack the subgroup DLP. In
Chapter 3 we review index calculus algorithms which are used to solve the full
DL. In Chapter 4 we briefly discuss quantum algorithms. Finally, in Chapter 5
we draw conclusions.

In this report we have extensively used the reports of Odlyzko [17] and
Denny, Weber, and Schirokauer [25]. We have also used explanations from [4].



Chapter 2

(Generic algorithms

In this chapter, we discuss generic discrete logarithm algorithms that work in
any cyclic group G as long as computing in that group is efficiently possible. To
be more precise, we assume that the following is efficiently possible:

1. We have a representation of the group elements of binary length O(|G|)
where |G| denotes the cardinality of G' and the binary length of an object
is the number of bits required to represent that object. Sorting those
representations is possible.

2. Given two elements, we can decide whether they are equal and we can
multiply and divide the elements.

In F*, elements are uniquely represented as coefficient vectors with respect to
a GF(p)-basis of F. The entries in that vector are in GF(p). Equality testing
means comparing the representing vectors. Multiplication and division uses
multiplication tables for the basis elements. Those operations can be efficiently
implemented.

Let o,y € F* such that o € (7). Let G = (v) and let n be the order of G.
If n is not known, then n is replaced by an upper bound on the cardinality of
G, for example, n = p'. Recall that it is our goal to find z € N such that

a=~" (2.1)

2.1 Enumeration

The simplest method for solving the DL problem is to test whether x = 0,1,2,3, ...
satisfy (2.1). As soon as the answer is “yes”, a discrete logarithm is found. This
is called enumeration. Enumeration requires  — 1 multiplications and z compar-
isons in G. Only the elements «,y and ¥* need to be stored. Hence, enumeration



only requires space for three group elements. In practice, applying enumeration
is infeasible if the finite field F' has more that 280 elements.

2.2 Shanks “baby-step giant-step” technique

A considerable improvement of the enumeration algorithm is the baby-step giant-
step algorithm of D. Shanks (see [27]). This algorithm requires fewer group
operations but more storage. We describe this algorithm.

Set
u = [y/n]

and write the unknown discrete logarithm x as
z=qu+r, 0<r<m.
Then

T

() =ay "
The baby-step giant-step algorithms computes the set of baby-steps
B={(ay",r):0<r<u}.

If this set contains a pair (1,r), then ay™" =1 (i.e., « = 4"). Hence, z = r is
a discrete logarithm of a to base . If B contains no such pair, the algorithm
determines

d ="
Then it tests for ¢ = 1,2, 3, ... whether the group element §? is the first com-
ponent of an element in B (i.e., whether there is a pair (69,r) in B). As soon
as this is true, we have

which implies

Therefore, a discrete logarithm is
r=qu-+r.

The elements §7, ¢ = 1,2,3... are called giant-steps. The algorithm compares
each §7 with all first components of the baby-step set B. To make this compar-
ison efficient, the elements of B are stored in a hash table where the key is the
first entry in an element of B (see [6], Chapter 12).

This algorithm has running time O(y/n) and requires storage O(y/n). If
the discrete logarithm is known to lie in an interval of length at most m, then

a variant of Shanks’ algorithm has running time O(m'/?) and needs storage
O(m'/?) (see [5]).

The most serious problem with Shanks’ algorithm is the storage requirement.
It makes the Shanks algorithm inapplicable for n > 2120,



2.3 Variants of the Shanks “baby-step giant-step”
technique

The algorithms of Buchmann, Jacobson, and Teske [5] and of Terr [30] are
variants of the Shanks babystep-giantstep technique whose running time and
storage requirement depends on the actual value x of the discrete logarithm
rather than the order of the cyclic group generated by «. Like enumeration,
those algorithms are fast if the discrete logarithm is small. They have running
time and storage requirement O(y/z). In fact, the algorithm of Buchmann,
Jacobson, and Teske requires at most 44/ group operations and space for at
most 24/z group elements. This algorithm guesses an upper bound for the
discrete logarithm. If the discrete logarithm is not found, then the upper bound
is doubled. Terr’s algorithm calculates one baby step followed by one giant-step
and is approximately as efficient as the algorithm of Buchmann, Jacobson and
Teske. Note that the O-constants are very small.

Those algorithms show that in order for the DL problem to be intractable,
it does not suffice that the the cyclic group generated by the base element is
large, but the discrete logarithm itself must be large.

The modified algorithms from this Section are inapplicable for z < 2!20.

2.4 The Pollard algorithms

There are several algorithms due to John Pollard which avoid the space problems
of the Shanks algorithm and its variants by introducing randomness. As an
example, we sketch the Pollard rho algorithm. That algorithm simulates a
random walk in the group and uses the birthday paradox to determine the
discrete logarithm after approximately 1/n steps.

Again, we want to solve the DL problem (2.1). We need three pairwise
disjoint subsets G1, G2, G3 of G such that Gi UG, UG3 =G. Let f: G —» G
be defined by

B if B € Gy,
fB) =4 B> ifpeaGy,
af if g € Gs.
We choose a random number zq in the set {1,...,n} and compute the group
element Sy = v*°. Then, we compute the sequence (8;) by the recursion
Bit1 = f(Bi)-

The elements of this sequence can be written as

ﬁi = ’yziayia i>0.



Here, g is the initial random number, yo = 0, and we have

z;+1 modn if §; € Gy,

Tig1 = 2x; mod n if B; € G,
Z; if B; € Gs,
and
Yi if g; € G,
Yiv1 = 2y, mod n if B@' S Gz,

y;+1 modn if B; € Gs.

Since we are working in a finite group, two elements in the sequence (8;)
must be equal (i.e., there is ¢ > 0 and k > 1 with 8;1, = §;). This implies

7“ a¥i = ,yzi+kayi+k

and therefore
,Yzi—icu.k — ayi+k —Yi

Hence, the discrete logarithm x of o to the base 7 satisfies
(i — igr) = ¢(Yiyr —yi) mod n.

We solve this congruence. The solution is unique mod n if y;4 — y; is invertible
mod n. If the solution is not unique, then the discrete logarithm can be found
by testing the different possibilities mod n. If there are too many possibilities,
then the algorithm is applied again with a different initial zq.

We estimate the number of elements 3; that must be computed before a
match is found (i.e., a pair (4,7 + k) of indices for which 8;1 = ;). For this
purpose, we use the birthday paradox. The possible birthdays are the group
elements. We assume that the elements of the sequence (8;);>0 are random
group elements. This is obviously not true, but the construction of the sequence
makes it very similar to a random sequence. Therefore, O(1/|G|) sequence
elements are sufficient to make the probability for a match greater than 1/2.
For details about the birthday paradox see [4] 4.3.

Thus far, our algorithm must store all triplets (8;, z;, ;). As we have seen,
the number of elements of the sequence is of the order of magnitude /|G|, as in
Shanks’ baby-step giant-step algorithm. But we will now show that it suffices to
store a single triplet. Therefore, the Pollard rho algorithm is much more space
efficient than the baby-step giant-step algorithm.

Initially, (81,21,y1) is stored. Now suppose that at a certain point in the
algorithm, (B;, z;,y;) is stored. Then (3;,z;,y;) is computed for j =i+ 1,i +
2,... until either a match is found or j = 2i. In the latter case, we delete §;
and store f9;. Hence, we only store the triplets (3;, ;,y;) with i = 2%,

We explain how a match is found if only one triplet is stored. Denote by ¢
the index of the triplet that is currently stored. If i = 27 > s, then f; is in the
period. In addition, if 27 > k, then the sequence

ﬂ25+17ﬂ2j+27 tee 7ﬂ25+1



is at least as long as the period. One of its elements is equal to [o;. But
this is exactly the sequence that is computed after by; has been stored. All
of its elements are compared with (5;. Hence, one of these comparisons will
reveal a match. Because the sum of the lengths of the pre-period and the
period is O(1/]G]), it follows that the number of sequence elements that must
be computed before a match is found is O(1/|G|). Therefore, the algorithm has
running time O(,/|G]) and needs space for O(1) triplets. This is much more
space efficient than the baby-step giant-step algorithm.

The algorithm is even more efficient if eight triplets are stored. This works as
follows. Initially, all eight triplets are equal to (8o, Zo, yo).- Then those triplets
are successively replaced. Let i be the index of the last stored triplet. Initially,
we have ¢ = 1. For j = 1,2,... we compute (3;,z;,y;) and do the following:

1. If B; is equal to one of the stored group elements, then a match is found
and the computation of the sequence terminates.

2. If j > 3i, then the first of the eight triplets is deleted and (8;,;,y;) is
the new last triplet.

Further improvements are due to Teske [31]. The Kangaroo method of Pol-
lard [21] is another variant of the rho method. Its running time is O(m'/?) when
the discrete logarithm is known to lie in an interval of length at most m. The
space requirement is O(1).

| Algorithm | running time | storage |
Enumeration n O(n)
Shanks [27] O(y/n) O(y/n)

BJT [5] 6v/m 2\/m
Terr [30] O(vz) O(vx)
Pollard rho [22] O(/n 0o(1)
Pollard kangaroo [21] | O(y/m 0o(1)

Table 2.1: Generic algorithms, DL z in group of order n, known to lie in interval
of length m

2.5 Pohlig-Hellman algorithm

If the factorization of the order n = p' —1 of GF(p')* is known, then the Pohlig-
Hellman algorithm [19] reduces the discrete logarithm problem in GF(p!)* in
polynomial time to discrete logarithm problems in subgroups of prime order
q where g are the prime divisors of n. First, finding a discrete logarithm z
is reduced to the determination of a discrete logarithm z; modulo the prime
powers g°¢ which divide n. Next, each z, is written in a g-adic expansion and



each digit in this expansion is calculated as a discrete logarithm in some group
of order ¢. In those groups, one of the algorithms from the previous sections
can be applied. The running time of the Pohlig-Hellman algorithm combined
with the Pollard rho algorithm is approximately ,/q where q is the largest prime
divisor of n. The storage requirement is negligible.

2.6 Parallelization

There are parallel versions of the Pollard kangaroo method [21], [32]. The
elapsed time for the computation shrinks by a factor linear in the number of
processors used. However, substantial storage space has to be available at a
central location (see [14]).

2.7 Experimental data

Since in general, index calculus methods compute discrete logarithms in finite
fields much faster than the known generic methods, no extensive experimental
results are available. However, in the group of points of an elliptic curve over a
finite field, only generic methods are available to compute discrete logarithms.
Using the parallel Pollard kangaroo method, it was possible to compute discrete
logarithms in an elliptic curve point group over a finite prime field where the
group order is a 97-bit prime using 2 * 10'* group operations (see [8]). Also, it
was possible to compute the discrete logarithm in an elliptic curve point group
with a 108-bit order over a finite field of characteristic 2 using 2.3 * 10!5 group
operations (see [8]).

2.8 Lower bounds

There are lower bounds on the complexity of the discrete logarithm problem.
In a group where the group operations including equality testing has to be
performed by oracle queries, discrete logarithm computations require at least
p operations where p is the largest prime divisor of the group order (see [2]).
If group elements have a unique encoding (which allows sorting in the Shanks
algorithm and randomizing in Pollard’s algorithms) but group operations have
still to be carried out using oracle queries, then Nechaev [16] and Shoup [29]
prove a lower bound of order p'/2.

2.9 Conclusions

In this section, we discuss the following question: How do we have to choose v
and « in (2.1) such that solving the discrete logarithm problem using a generic
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algorithm is infeasible. This is relevant for the security of cryptographic schemes
such as the Schnorr identification and signature scheme [26] and the DSA [9],
[36].

Let the order of the base element in (2.1) be n. To protect against Pohlig-
Hellman attacks, n is a prime number. Also, the discrete logarithm z of a to
base v is of order n. Then the known generic algorithms execute at least n'/2
group operations to find the discrete logarithm z. Lenstra and Verheul [14],
assuming technological and algorithmic progress, predict secure group orders as
a function of time. This is shown in Table 2.2.

Year | Group order
2002 127
2010 138
2020 151
2030 165
2040 179
2050 193

Table 2.2: Secure cryptographic group orders

This means that the discrete logarithm problem in a cyclic subgroup of prime
order g ~ 2199 as used in the DSS [9], is intractable until 2020. Although the
lower bounds quoted in Section 2.8 indicate that that this is a pretty safe asser-
tion, mathematical progress that uses the special structure of such subgroups
may very well make this discrete logarithm problem much easier.

11



Chapter 3

Index calculus algorithms

In this chapter, we describe index calculus algorithms. Those algorithms use
the special structure of the finite field F. The basic idea of hat algorithm goes
back to Kraitchik (see [15]). Currently, the most efficient variants of the index
calculus method are the Number Field Sieve (NFS) and the Function Field Sieve
(FFS) on which we concentrate in this chapter.

Let p be a prime number, I € N and ¢ = p!. Also, let v € GF(q)*.

3.1 Idea

The basic idea of index calculus algorithms is that if
[[af =7 (3.1)
for some elements q; in the subgroup generated by v and exponents e;,r € Z,

1 < i <m, then

Z e;log, a; =r mod g — 1. (3.2)
=1
Many relations of the type (3.1) yield a system of linear congruences of type
(3.2). This system (3.2) yields the discrete logarithms of the «; if it is non-
singular.

There are two computational problems in the index calculus algorithm:

1. Find sufficiently many relations.

2. Solve the linear system.

12



We explain the computation of relations in a special case. Suppose that
I =1s0q=pand GF(q) = GF(p) = Z/pZ is a prime field. Let v = ¢ + pZ
and a = a + pZ, that is, ¢ is a representative of the residue class v and a is a
representative of the residue class a. A simple approach for finding relations is
to take a random integer r, compute © = ¢g" mod p, and check whether

m
w=]]rf, (3.3)
=1

where the p; are prime numbers satisfying p; < B for some bound B. When
(3.3) is satisfied then w is called B-smooth. From (3.3) we obtain

m
pr =¢" mod p (3.4)
i=1

which is a relation.

In the general case, the known index calculus algorithms work as follows (see
[25]).

Let R be a Dedekind domain. In R, every ideal factors uniquely into prime
ideals. Assume that there is a surjective ring homomorphism

¢: R — GF(g).

Let S be a set of prime ideals of R and call an element of R smooth if the ideal
it generates factors over S. The set S is called the factor base. Let ¢ € R such
that ¢(c) = 7. For an element r € R we denote by (r) the ideal generated by r.
The algorithms find many pairs (u,v) € R? such that

L ¢(u) = ¢(v).
2. (u) factors into a power of (¢) and a smooth element, that is, (u) =
() TTpes PP

3. v is smooth, that is, (v) = []peg PFP).

Those pairs and linear algebra techniques are used to solve the discrete logarithm
problem. It is also possible to use two different Dedekind domains R;, ¢ = 1,2
(see [13)]).

3.2 Asymptotic running times

3.2.1 The function L,[u,v]

To estimate the running time and storage requirement of the index calculus
algorithms the function

Lo[u,v] = ev(log z)" (loglog z)1~

13



is used, where z,u,v are positive real numbers. I explain the meaning of this
function. We have

Ly[0,v] = e?tog )’ loglog )’ — (1og ) (3.5)

and
Lz[l,’l}] — ev(logwl(loglogac)0 — evlogm‘ (3.6)

Let x be a positive integer which is the input for an algorithm. In the context
of this report, z is the cardinality of the finite field GF(q).

If an algorithm has running time L,[0,v], then by (3.5) it is a polynomial
time algorithm. Its complexity is bounded by a polynomial in the size of the
input. The algorithm is considered efficient, although its real efficiency depends
on the degree v of the polynomial.

If the algorithm has running time L,[1,v], then by (3.6) it is exponential.
Its complexity is bounded by an exponential function in the length of the input.
The algorithm is considered inefficient.

If the algorithm has running time L,[u,v] with 0 < w < 1, then it is subez-
ponential. The algorithm is slower than polynomial but faster than exponential.
So the function Lg[u,v] can be viewed as a linear interpolation between poly-
nomial time and exponential time.

3.2.2 Rigorous algorithms

We describe the knowledge concerning discrete logarithm algorithms whose run-
ning times can be proved.

In the case that ¢ = p! with p < 1°)] Pomerance et al. [3] prove that
the index calculus algorithm that uses as the ring R a polynomial ring (IC-PR
algorithm) has running time L,[1/2,v/2 + o(1)].

In the case that ¢ = p, Pomerance [23] proves for R = Z a running time
Ly[1/2,V/3 + o(1)].

In the case that ¢ = p* Lovorn-Bender [3] proves a running time L,[1/2,3/2+
0(1)]. Here R is a maximal quadratic order.

3.2.3 Heuristic algorithms

There are many discrete logarithm algorithms that have not been rigorously
analyzed yet. However, those algorithms can be analyzed heuristically. In a
heuristic analysis, unproved but plausible assumptions are used such as the
assumption of some generalized Riemann hypothesis. All algorithms in this
section are of this kind.

In the case that p > [, Adleman and DeMarrais prove a running time
L,[1/2,2 + o(1)]. Here R is a number ring (IC-NR algorithm). This result

14



together with the analysis of the IC-PR algorithm shows that discrete loga-
rithms in any GF(g) can be computed in time L,[1/2,c+ o(1)] where ¢ < 2 and
q — 0.

Asymptotically much faster are the Number Field Sieve (NFS) and the Func-
tion Field Sieve (FFS).

In the case that I < (logp)'/? + ¢ for any & > 0, the NFS has a conjectured
running time of L,[1/3,c+ o(1)] with ¢ = (64/9)'/% = 1.9229... (see [24]).

For special primes p, for example for p = ™ + a, where r and a are small
and n is large, versions of the number field sieve for the fields GF(p) we have
C = 1.5262... or even less. Those algorithms are called Special Number Field
Sieve (SNFS) (see [24]).

In the case that [ > (logp)? the FFS has a conjectured running time of
Ly[1/3,(32/9)!/3 + o(1)] (see [1]).
A gap exists between the ranges of fields for which the NFS and the FFS

yield a L,[1/3, ¢+ o(1)]-algorithm and the problem of finding an algorithm with
such a conjectured running time for all fields remains open.

3.3 Implementation

In this section we discuss various issues concerning the implementation of the
NFS. The NFS and the FFS are currently the most efficient DL algorithm in
finite fields. Extensive experiments have been made in prime fields GF(p) and
in fields of characteristic 2 GF(2!).

3.3.1 Polynomial

If the NFS is used in a prime field GF(p) then two irreducible polynomials g, g’
in Z[X] have to be found that have a common root mod p. For example, in
the record computation described in Section 3.3.4 one polynomial is of degree
2 and the other is of degree 3. To speed up the NFS, it is necessary to make
the coefficients of the polynomials as small as possible. In [13] LLL-reduction
is used to find good polynomials. The coefficient size is p'/(4+1). The NFS
algorithm is very sensitive to the size of those coefficients. If the prime p is of a
special form, then finding a good polynomial may be much easier. For example,
for the prime p = (739- 749 —736)/3 the polynomial f(X) = 739X5 — 5152 can
be used (see [33]).

If the FFS is used to find discrete logarithms in GF(2!), the situation is
analogous. The rational integers are replaced by the polynomials over GF(2).
The prime p is replaced by a irreducible polynomial over GF(2) of degree I.

15



3.3.2 Sieving

In the sieving stage, elements of smooth norm must be found in the number fields
or function fields defined by g and ¢'. Sieving algorithms have the advantage
that they require no trial division. Once it is known that an element or ideal
under consideration is divisible by a prime number or a prime ideal, it can be
deduced which are the other elements or ideals that are divisible by that number
or ideal. The most efficient method for this sieving stage is the lattice sieve (see
[20] and [34]).

3.3.3 Linear algebra

The linear systems that arise in the context of the index calculus algorithms are
extremely sparse since in the relations only very few exponents are non-zero.
Still, the systems are extremely large. For example, in the record computation
[12], a linear system with 2685597 equations and 1242551 unknowns had to be
solved.

The linear algebra part has two steps. The first step is structured Gaus-
sian elimination (see [17]. It reduces the size of the system while keeping its
sparseness. For example, equations in which only one variable has a non-zero co-
efficient can be eliminated. They determine that variable. So the corresponding
variable can also be eliminated.

The second step uses Lanczos’s algorithm (see [10]). It is a solver for linear
systems which makes use of the sparseness of the system. It heavily uses matrix
times vector computations which are cheap when the matrix is sparse. That
algorithm can be parallelized (see [7]). A serious problem of the linear algebra
step is the size of the entries of the corresponding matrix. Those entries are
elements of the finite field in which the DL problem is solved. This size makes
the linear algebra problem much more difficult than the corresponding problem
in integer factoring algorithms where the entries are either 0 or 1. However,
modern computers allow solving fairly large systems.

3.3.4 Record in prime fields

The fastest algorithm for computing discrete logarithms in GF(p) is the Number
Field Sieve (see [24] and [13]).

The current record is the solution of the McCurley challenge problem [15] to
compute the discrete logarithm modulo a prime of 129 decimal digits by Denny
and Weber [35]. However, the prime involved was of a special form so that the
Special Number Field sieve could be applied.

The current record for the general number field sieve is the computation of
discrete logarithms modulo a 120 digits prime. This was done in 10 weeks, on a
unique 525MHz quadri-processors Digital Alpha Server 8400 computer by Joux

16



and Lercier [12].

After a 40 days computation on a quadri-processor Alpha Server 8400 com-
puter, the necessary relations were found. The corresponding linear system has
2685597 equations with 1242551 unknowns.

The linear algebra step was carried out as follows. First, structured Gaussian
eliminations reduced the system to 271654 equations in 271552 unknowns with
22690782 non null entries. The time needed for this on only one processor was
less than 1 day.

Then, the critical phase was the final computation via Lanczos’s algorithm
[10]. The parallelized version of this algorithm took 30 days on 4 processors.

3.3.5 Record in fields of characteristic 2

The most efficient algorithm for computing discrete logarithms in fields of char-
acteristic 2 is the Function Field Sieve [1].

The current record is the computation of discrete logarithms in GF(25%1).
This was done in one month on a unique 525MHz quadri-processors Digital
Alpha Server 8400 computer by Joux and Lercier [11].

After a 3 weeks computation on a quadri-processor Alpha Server 8400 com-
puter, the necessary relations were found. The corresponding system has 472121
equations with 450940 unknowns.

The linear algebra step was carried out as follows. First, structured Gaussian
eliminations reduced the system to 197039 equations in 196939 unknowns with
12220108 non null entries. The time needed for this on only one processor was
less than 1 day.

Then, the critical phase was the final computation via Lanczos’s algorithm
[10]. The parallelized version of this algorithm took 10 days on 4 processors.

3.4 Conclusions

Taking the algorithms presented in this chapter and certain algorithmic progress
into account, Lenstra and Verheul suggest field sizes for secure crypto systems
as a function of time. This is shown in Table 3.1.

However, it may always be possible that some mathematician invents a com-
pletely new and much more efficient technique for finding relations on much
smaller factor bases. The invention of the Number Field Sieve by Pollard is an
example for such a mathematical break through which was not anticipated. In
that case, the predictions of Lenstra and Verheul may turn out to be far too
optimistic.

17



Year | Field size
2002 1028
2010 1369
2020 1881
2030 2493
2040 3214
2050 4047

Table 3.1: Secure cryptographic field sizes

18



Chapter 4

Quantum algorithms

A dangerous long-term threat to discrete logarithm cryptosystems comes from
quantum computers. Shor [28] showed that if such machines could be built,
discrete logs in finite fields could be computed in polynomial time. Recent
results on quantum computing can be found in the archive [18]. While there is
still some debate on whether quantum computers are feasible, no fundamental
obstructions to their construction have been found, and novel approaches are
regularly suggested. However, all experts agree that even if quantum computers
are eventually built, it will take many years to do so (see [17]).
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Chapter 5

Conclusions

As of today, the full discrete logarithm is best attacked by index calculus algo-
rithms and the subgroup discrete logarithm problem is best solved by generic
algorithms. Using the predictions of [14] it seems to be appropriate to use the
sizes in Table 5.1 in order for the discrete logarithm problem in finite fields to
be intractable.

Year | Field size | Subgroup size
2002 1028 127
2010 1369 138
2020 1881 151
2030 2493 165
2040 3214 179
2050 4047 193

Table 5.1: Sizes that make the DL in finite fields intractable.

Those predictions take moderate algorithmic progress into account. How-
ever, there are two serious threats that might make them totally invalid:

1. Quantum computers. If they can be built, then discrete logarithms in
finite fields can be computed in polynomial time.

2. Mathematical breakthroughs. There is no proof that the DL problem in
prime fields remains difficult. There is always the possibility that math-
ematicians find much faster DL algorithms. Even polynomial time DL
algorithms are not impossible.

We apply those conclusions to the security analysis of the Digital Signature

Algorithm (DSA) [9], [36]. The DSA is only secure, if the full discrete logarithm
problem is intractable in a prime field that has between 2512 and 21924 elements
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and if the subgroup discrete logarithm problem is intractable in a subgroup
with approximately 2190 elements. In view of Table 5.1 the DSA with those
parameters will soon become insecure. To maintain security for the next 20
years, it is recommended to increase the field size to 2!°%0. This does not take
unexpected break throughs into account. I recommend using the DSA with
larger primes in an environment where it can easily be replaced by another
signature scheme, if necessary.
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